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Key challenges in cancer data 

analysis 

• Complexity: Multiple driver mutations are typically 
required for caner progression

• Heterogeneity: Phenotypically similar cancer cases 
might be caused by different sets of driver mutations 

• Driver mutations /alterations– mutations contributing to cancer 
progression

• Passenger mutations – neutral mutations accumulating during 
cancer progression

• Some driver mutations are rare

• Epistasis – masking of the effect of one mutation by 
another mutation 

• Cancer evolution black room….



Network/Systems biology view

• Motivation: 
– Effects of genetic alteration propagate trough the 

network affecting downstream genes 

– Different driver mutations often dysregulate common 

pathways

• Main lines of attack:
– Examining known pathways for a signature of 

dysregulation

– Computational pathways discovery from high-

throughput interaction data 



Which network to use?



Kim, Przytycka, Frontiers 2013

REAL NETWORK 

Dutch Interior 1, Joan Miro’ (1893–1983)

Museum of Modern Art, New York
© 2012 Successió Miró / Artists Rights Society (ARS), New York / ADAGP, Paris

(used with ARS permission).

The Lute Player, Hendrick Maertensz Sorgh (1610-1670),  

Rijksmuseum, Amsterdam
(public domain)

High throughput network versus “the true” 

network



Three general techniques that utilize 

network based approaches in cancer studies  
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• Module cover

• Network Flow

• Mixture /topic models  
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• Module  cover

• Network Flow

• Mixture models  
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Goal: Given a set of dysregulated genes and disease cases, find a  representative 

set of dysregulated genes

Kim et al. PolS CB 2011/RECOMB 2010

Gene  “covers” the  case

(it  is altered in this case )

Disease Cases

Genes 

Finding a representative set of 

dysregulated genes in disease cases



Gene cover

Module Cover Approach 

Optimization problem: 

Find smallest cost set of modules so that each disease case is 

covered at least k times 

Optimization problem: 

Cost  is a function of:

distance in the network of genes 

in same module

A similarity measure 

(application dependent) 

number of modules 

(parameterized penalty)

Kim et al. PSB 2013
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Signature modules 

from GBM Dataset 

(REMBRANDT)

Module Cover: Glioblastoma Data

Kim et al. PSB 2013



Different patients groups have different signature 
modules
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• Module  cover

• Network Flow

• Mixture models  

Three general techniques that utilize 

network based approaches in cancer studies  



Gene expressionCopy  number aberrations

or/and  mutations 

Information flow from genotypic changes to 

expression changes 

Kim et al. PolS CB 2011/RECOMB 2010



Selecting “signature” genes 

Smallest set of genes so that each 

case is “covered” at least specified 

number of times 

Kim et al. PolS CB 2011/RECOMB 2010



Cancer Cases

Gene expression data 
Cancer Cases

CNV data 
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Explaining expression changes in the 

signature genes 

1 2    ….N

?

1 2    ….N



eQTL analysis links expression variability to 

genotypic variability  

Tu et al Bioinfomatcis 2006

Suthram et al MSB 2008

Kim et al. PolS CB 2011/RECOMB 2010



Uncovering pathways of information flow between 

CNV and target gene

Tu et al Bioinfomatcis 2006

Suthram et al MSB 2008

Kim et al. PolS CB 2011/RECOMB 2010



Adding resistances differentiate likelihoods of the 

edges 
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Resistance - set to favor most likely path -based on gene expression values
(reversely proportional to the average correlation of the expression of the adjacent genes with 

expression of the target gene)



Finding subnetworks with significant current flow 
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Resistance - set to favor most likely path -based on gene expression values
(reversely proportional to the average correlation of the expression of the adjacent genes with 

expression of the target gene)

Putative driver
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target gene/module 

Kim et al. PolS CB 2011/RECOMB 2010



Cancer Cases

Gene expression data 
Cancer Cases

CNV data 
21

Repeat for other genes and significantly 

associated loci



Cancer Cases

Gene expression data 

Cancer Cases

CNV data 
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Are there common functional pathways?

target gene/module 

target gene/module 

Kim et al. PolS CB 2011/RECOMB 2010



Gene Hubs
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Pathway  Hubs

23

Driving Copy number 

aberrations 
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• Module cover

• Network Flow

• Mixture/topic models  

Three general techniques that utilize 

network based approaches in cancer studies  

Chang J, Blei DM: Hierarchical Relational Models for Document Networks. Ann Appl

Stat 2010, 4(1):124-150.



Different patients groups have different signature 
modules
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Phenotypic features:                  Explanatory features 

Nodes – patients

Edges – phenotypic similarities

neighbors in patient network should have similar explanatory 

features 

– mutations, CNV, micro RNA level;

– Epigenetic factors, 

– Sex, age, environment ….

Phenotypic versus explanatory features 

Survival time

Response to drugs,…..

Gene expression profile 

Patient graph

Key idea



Assuming k subtypes, generate feature distribution 

for them
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Subtype I

EGFR_A  0.45

NF1_M    0.37

PTEN_A  0.21

….

Subtype II

PDGFA_A  0.51

IDH1_M    0.29

M53_M      0.17

….

Subtype III

mirR218_H  0.38

ICDK2_D     0.22

SHC1_M      0.14

….

Subtype IV

CDK2B_D 0.37

EGFR_A  0.25

….

Cho et al. NAR 2013/RECOMB 2012



Subtype I

EGFR_A  0.45

NF1_M    0.37

PTEN_A  0.21

….

Subtype II

PDGFA_A  0.51

IDH1_M    0.29

M53_M      0.17

….

Subtype III

mirR218_H  0.38

ICDK2_D     0.22

SHC1_M      0.14

….

Subtype IV

CDK2B_D 0.37

EGFR_A  0.25

….

Features:
EGFR_A

NF1_M

CDKN2B_D

.

.

;

Based on patient’s features represent each patient as 

mixture of the subtypes 

Cho et al. NAR 2013/RECOMB 2012



Generate edges based on similarity of  subtype mixtures

Optimize parameters to maximize likelihood of 

the patient -patient network

Cho et al. NAR 2013/RECOMB 2012



30

Visualization of subtypes distribution form a sample 

model 



Patient-patient relationship based 

on1000 models

Observation: No separate Neural group

Cho et al. NAR 2013/RECOMB 2012



Selected cancer related features 
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*

Observations: correctly recovered features form Varhaak et al. (TCGA)

AKT2 – most important defining feature of the Classical group

Potential benefits of using dys-regulated pathways as features 

* * * *



• Nosiness and incompletes and bias  of 

interactome

• More data  is needed to be able to account for 

age/sex/environment  and other complex 

dependencies

Challenges

Summary

• Networks/Systems based approaches parovide

new view of cancer data

• These methods are general and can be adopted to 

new types of data
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Using 1,000 models to infer: 

• Probabilistic relation between patients

• Probabilistic relation between features

• Probabilistic elation between features and 

patients
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Case study of GBM 

(Glioblastoma Multiforme)
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patient network for GMB

Mesenchymal

Classical  

Proneural

Neural 

Varhaak et al. 

Classification 



Simultaneous modeling of 

phenotypic and explanatory features 

In each model we assume

– k subtypes

– each subtype is defined by probability distribution of 

(explanatory) features

– each patient is a mixture of these subtypes

– patients with similar phenotypic features have mixtures 

Chang J, Blei DM: Hierarchical Relational Models for Document Networks. Ann Appl

Stat 2010, 4(1):124-150.
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Visualization of subtypes distribution form a sample 

model 

Cho et al. NAR 2013/RECOMB 2012


